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1. INTRODUCTION

The U.S. Army Research Laboratory (ARL) completed an initial investigation of the flow field within
a typical test chamber operated by the Army Edgewood Research, Development and Engineering Center
(ERDEC). The ERDEC test chamber is designed to mix compressor-driven airflow with gas/solid effluent
from a test article placed inside the chamber. An example of such a test article is a smoke generator, or
smoke pot, commonly used on the battlefield to provide a means of obscurant. During the test, the
air/effluent flow field is exhausted from the test chamber for analysis. In order to simulate this flow, the
ARL applied computational fluid dynamics (CFD) codes that include multispecies chemical kinetics as
well as multiphase (particulate) submodels. These codes were developed at ARL to numerically solve the
Navier-Stokes equations and simulate the chemically reacting, multiphase flow field in gun propulsion

systems. This code has been used successfully for other applications at ARL (Nusca 1989, 1991, 1993).

Application of the code to the present study involved generating a computational mesh that covered
the chamber interior as well as specifying proper boundary conditions on the chamber walls, chamber top
(air inflow), chamber exit (outflow), and test article (effluent outflow), as depicted in Figuré 1. The
governing equations, boundary conditions, and solution method are outlined in this report. Numerical
solutions of the gas flow and effluent concentration distributions in the test chamber were generated for
operating times up to 4.5 min. Graphical results with discussion are presented in this report. Numerical
simulations reveal that certain values of chamber through-flow induce flow patterns within the chamber
that are dominated by vortices. This flow pattern increases the effluent residence time in the chamber as
well as the mixing of gas/particulate from the test article with air. The test article effluent jet feeds
effluent into this vortical motion, and only that flow that is trapped near the chamber floor is drawn out

of the chamber. Pockets of high effluent concentration can form in the chamber.

2. GOVERNING EQUATIONS

For purposes of producing a timely initial investigation, the cylindrical test chamber was modeled as
two-dimensional (2D). The goveming equations are written in Cartesian coordinates with velocity
components u and v for the x (along chamber floor) and y (along chamber height) directions, respectively
(see Figure 1). The Reynolds-Averaged Navier-Stokes (RANS) equations describe the 2D reacting gas
flow (N species mixture) in the chamber given conditions at the boundaries of the geometry. These partial

differential equations describe the time (t) evolution of the dependent variables of velocity (u, v), pressure




(p), mixture density (p), species mass fraction (c;, fori = 1 to N species), internal energy (e), temperature

(T, derived from energy), and viscous shear stresses (7).
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In these equations, ¢; and @, are the mass fraction and chemical production terms for the i species. For
the present application, finite-rate chemical production terms were not used. Chemical reaction was
modeled as an infinitely fast, one-step, unidirectional (i.e., forward) reaction of smoke pot effluent (i = 1)

and air (i = 2) to form product (i = 3) for stoichiometric air/effluent ratio of 0.17 and effluent density

above 50 g/m3. The reaction temperature was taken as 680° C.




Effluent + Air — Product

O _ 4 PO1P% @ POy PO, @3 . PO PG

— fr—— —_— —y or—

M, My M, M, M; M, M M, M,

ke =1x 10%.

The temperature dependence of the species viscosity, p;, and thermal conductivity, K, cz/m be modeled
using Sutherland’s law (White 1974),

/2
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The terms p,, T, and S can vary with species but were assumed to be constant with values of S, = 199 R,
Top = 491.6 R, p, = 0.1716 mP, S = 350 R, T, = 491.6 R, ¥, = 0.0139 BTU/h-ft-R. The mixture
viscosity and thermal conductivity (mixture quantities are denoted by subscript m) are determined using

Wilke’s law (Wilke 1950), denoting f as p or X,
-1/2 1/2 1/4
_ -1 1 M; f; M;
£ = X0 58 (5 X)) 4 - 78—-(1 * ’M‘.] b H ['ﬁ '

where X, and M, are the mole fraction (X; = py/M;) and molecular weight of the i species, respectively
M; = 97.94, M, = 28.8, and M; = 63.37 g/mole). Fick’s law (White 1974) is used to relate the mixture
diffusivity to the mixture viscosity through the Schmidt number, Sc = p,/(p D), assumed unity. The
specific heat at constant pressure of each species (per mass) is generally given by the following fourth-
order polynomial curve fit (Drummond, Rogers, and Hussaini 1987):

c

i = A+ BT + GT? + D;T? + T4,
R

i

For the present study, ¢, was assumed constant with values cp; = 0.2878, ¢y =0238, and

Cp3 = 0.1277 cal/g°C. The mixture pressure (equation of state), enthalpy, total energy per unit volume,




and ratio of specific heats are given by (R, is the universal gas constant and AHg is the heat of formation

for species i)
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An algebraic turbulence model (Bradshaw, Cebeci, and Whitelaw 1981) was used. In this model, the
eddy viscosity, p,, is computed assuming that the viscous layer consists of an inner and an outer
component. The inner region follows the Prandtl mixing length formulation based on a prescribed
characteristic length scale, L, a boundary layer intermittency factor, € (having a value of 0 for laminar,

1 for turbulent flows, and a function of x for transitional flows), the displacement thickness of the layer,

0, and a constant, a.

_y 2. du
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Here, y_, is a prescribed, small distance from the solid boundary, and y, is the edge of the viscous layer.
Further details can be obtained from Bradshaw, Cebeci, and Whitelaw (1981). The fluid viscosity is then
B = p(T) + p,, where p_(T) is obtained using Sutherland’s law and Wilke’s law.

3. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

The boundaries of the test chamber (see Figure 1) are the air inlet at the top (roof), the exit port on
the chamber floor (connected by ducts to the wind tunnel fan), and the vertical walls. The smoke pot is
placed on the chamber floor, near the chamber exit port. Since the governing equations are elliptic (low-
speed flow), conditions along these boundaries must prescribe values of the dependent variables, the
gradient of the dependent variables in the boundary-normal direction, or an algebraic relation which

connects the values of the dependent variables to the normal component of velocity.

At the air inlet, x-direction profiles of all dependent variables, p, u, v, 6, T, and p, are specified. It
is assumed that the flow at the inlet consists of air and that convection/diffusion of effluent to the chamber
top is not permitted to exit the chamber. By mass conservation, the inlet flow velocity was specified as

u = .062 ft/s, and a parabolic-shaped profile was assumed.

The exit port velocity was specified as u = 2.96 ft/s (5,380 I/min) with a parabolic-shaped profile.
Boundary-normal gradients of all dependent variables at the exit plane are zero. Mass that exits the port

is not assumed to reenter.
The no-slip/no-penetration condition (u = v = 0) is applied to the solid chamber and smoke pot walls.
The walls are assumed to be adiabatic (i.e, normal derivative of T set to zero). The normal gradient of

all mass fractions, do;/dn, are also set to zero.

The top of the smoke pot was assumed to be a constant mass flux source of effluent withu = 12.7 fi/s,
T = 320° C, M, = 97.94 g/mole, and ¢ = 0.2878 cal/g® C.

4. COMPUTATIONAL ALGORITHM

Equation (1) can be reduced to a successive-substitution formula for a general dependent variable, W,

at each node on the computational grid. Central finite-differences are used for the diffusive (arrays G,




and G,) and source terms (array €2) and upwind differences for the convective terms (arrays F, and F)).
Using upwind differencing in the species conservation equations (i.e., W = po;) reduces the occurrence
of negative species mass fractions in mixing layers. The resulting system of equations for the entire grid
is solved using a Gauss-Seidel relaxation scheme. Each iteration cycle is made up of J subcycles, where
J is the number of equations being considered. In each subcycle, grid points are scanned row by row, and
a single variable is updated. When all subcycles are completed, a new iteration cycle in which the values
of the variables from the latest iteration are immediately used is started. This is consistent with the
Gauss-Seidel methodology. Convergence is satisfied when the greatest relative change in any flow

variable is smaller than a prescribed tolerance. See Nusca (1989, 1991) for further details.

5. RESULTS AND DISCUSSION

Figure 1 shows the computational grid used to discretize the chamber interior. The number of grid
nodes in the x and y directions are 75 and 50, respectively (3,750 nodes total). Grid node clustering was

used to resolve flow gradients near the smoke pot.

The simulation was run for approximately 1 min to establish steady flow in the chamber before the
smoke pot was activated. Figure 2 shows the streamline (contour lines of constant stream function)
patterns. Note that a large counterclockwise vortex resides to the upper left of the smoke pot (established
by flow from the chamber inlet that must turn at the chamber floor) and that a smaller clockwise vortex
resides over the smoke pot (established by flow rising in the vertical direction that is turned by the

chamber inlet flow at the top).

Figures 3, 4, 5, and 6 show the flow streamline pattern after 1, 2, 3, and 4 min of smoke pot
operation, respectively. Initially, flow from the smoke pot rises toward the chamber top, establishing two
small vortices near the pot, rotating in opposite directions. At later times, the flow settles into a large
counterclockwise vortex offset from the centerline of the chamber and fed by the smoke pot jet. Flow
entrained in the chamber exit port is limited to that trapped near the chamber floor. Figure 7 shows the
flow streamline pattern at 4.5 min, which is 0.5 min after the smoke pot has ceased operation. The vortex

has reduced in size and is centered between the vertical chamber walls.

Figures 8-12 and Figures 13-17 show contours of smoke pot effluent mass fraction, ;, (mass of

effluent/total mass) and effluent density (product of mass fraction and mixture density), respectively, at




times 1-4.5 min. At early times, effluent concentrations are high in the smoke pot jet. At later times,
the effluent is entrained in the chamber vortex and diffused to smaller concentrations. Even at later times,
pockets of high concentration (50 g/m3 or greater) can be noted. The flow pattern is not greatly disturbed
by the chamber exit port on the floor. Figures 12 and 17 show the effluent mass fraction and density at
4.5 min, 0.5 min after flow from the smoke pot has been stopped. The chamber vortex has swept effluent

into the vicinity of the smoke pot where it becomes trapped at large concentration levels.
6. CONCLUSIONS

Due to the low-vertical flow velocity (0.06-2.7 fi/s) through the chamber induced by the small
chamber exit port on the floor, the natural flow pattern in the chamber is one that is dominated by rotating
vortices. This pattern increases the flow residence time in the chamber and mixes gases from the smoke
pot with air (similar to a "well-stirred reactor"). The smoke pot jet feeds effluent into this vortical motion,
with only that flow that is trapped near the chamber floor exiting the chamber. As a result, effluent is
allowed to form pockets of high concentration that may chemically react with the fresh-air supply fed
from the chamber inlet (i.e, top). After the smoke pot ceases operation, the chamber vortex concentrates
effluent near the chamber wall. A larger chamber exit port and forced exit velocity (controlled by the
wind tunnel fan) may assist in breaking these vortices and evacuating the chamber at the higher rate. The
increased chamber through-flow should be sufficient to turn the smoke pot jet toward the exit. Numerical

simulations aimed at predicting this effect have not been pursued.

The numerical simulations, results, discussions, and conclusions reached in this report are subject to
the assumptions used in the model and the information supplied to the model in the form of boundary
conditions. While the confidence level in the model is high (based on performance in simulating other
problems), further studies that test model sensitivity to the supplied boundary conditions should be
conducted. A full three-dimensional simulation should be conducted to model the perforated chamber top
wall, in addition to three discrete smoke pot exit holes as well as flow obstructions (i.e., pipes) in the
chamber. These are thought to represent secondary effects in the simulation of unknown final effect on

the results.
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LIST OF SYMBOLS

specific heat capacity, constant p
specific heat capacity, constant volume

mass diffusion coefficient

* specific total internal energy

flux vectors

molar specific enthalpy
Prandtl mixing length
molecular weight

total number of species

static pressure

specific gas constant, (y-l)cp/y
universal gas constant, R M,
Schmidt Number, p_/p D
time

static temperature

axial velocity

radial velocity

dependent variable vector
Cartesian coordinates

species mole fraction

Greek Symbols

= ®x M o

ratio of specific heats, ¢ /c,

enthalpy of formation

boundary layer displacement thickness
boundary layer intermittency factor
heat transfer coefficient

molecular viscosity
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Subscripts
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density

species mass fraction
shear stress tensor
chemical production term

source term vector

edge of the viscous layer
ith species

mixture quantity
constant pressure
turbulence quantity
constant volume
x-direction

y-direction
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